¿Nueva física? El bosón de Higgs está rodeado.

Harry Block

Exiliado
Mensajes
6.088
Reacciones
1.519
Ubicación
Fantasía
Respuesta: ¿Nueva física? El bosón de Higgs está rodeado.

UN HITO PARA LA CIENCIA

El bosón de Higgs: una casi nada que lo explica casi todo

El campo de Higgs, un residuo directo del Big Bang, fue la primera cosa que existió una fracción de segundo después del origen de nuestro universo

Javier Sampedro - Madrid
EL PAÍS - Sociedad - 4 JUL 2012


El bosón de Higgs no solo era la pieza final que faltaba para rematar el Modelo Estándar de la física de partículas —la tabla periódica del mundo subatómico—, sino que también ha sido el centro neurálgico de casi todas las especulaciones sobre el Big Bang desarrolladas en las últimas décadas. El mote de “partícula de Dios” que le endosó el premio Nobel Leon Lederman se debe a este papel central en el origen de todas las cosas, o en el bang del Big Bang, en palabras del físico teórico Brian Greene.

Como cualquier otra cosa en la mecánica cuántica —la física de lo muy pequeño—, el bosón de Higgs tiene una naturaleza dual: es a la vez una partícula y un campo ondulatorio que permea todo el espacio. El lector no debe preocuparse si esto le resulta difícil de entender: también le pasó a Einstein en 1905, cuando propuso que la luz —hasta entonces un campo por el que se propagaban las ondas electromagnéticas— debía consistir también, de algún modo, en un chorro de partículas, los ahora familiares fotones.

Y la generalización de esta esquizofrenia cuántica a todas las partículas elementales, la teoría de la dualidad onda-corpúsculo, estuvo a punto de arruinar la tesis doctoral y hasta la carrera entera de su formulador, el príncipe Louis-Victor Pierre Raymond de Broglie, séptimo duque de Broglie y par de Francia, que pese a ello, y al igual que Einstein, acabó recibiendo el premio Nobel por su idea descabellada. Cuando una teoría contraria a la intuición humana explica todos los datos conocidos y predice los que aún no se conocen, la equivocada no suele ser la teoría, sino la intuición humana.

Así que el bosón de Higgs, la partícula que acaban de detectar en el CERN, es también un campo de Higgs que permea todo el espacio. Según la cosmología moderna, ese campo es un residuo directo del Big Bang. El campo de Higgs fue la primera cosa que existió una fracción de segundo después del origen de nuestro universo, y la que explica no solo las propiedades de este mundo —como la masa exacta de todas las demás partículas elementales—, sino también su mera existencia.

El campo de Higgs fue el hacedor del bang, o de la inflación formidable que convirtió un microcosmos primigenio de fluctuaciones cuánticas en el majestuoso cielo nocturno que vemos hoy. Cada galaxia, y cada supercúmulo de galaxias, nació como un grumo microscópico en la jungla cuántica que ocupó el lugar de la nada en el primer instante de la existencia, como una ínfima fluctuación en la Bolsa de valores del vacío, amplificada hasta el tamaño de Andrómeda o de la Vía Láctea por la vertiginosa expansión —o inflación— del universo impulsada por el campo de Higgs.

El superacelerador del CERN en Ginebra, la verdadera catedral de la ingeniería y el conocimiento de nuestro tiempo, es el último paso de un viaje hacia atrás en el tiempo que emprendieron los físicos en la primera mitad del siglo XX. El universo era en su origen muy pequeño y denso en energía, y luego empezó a expandirse, y por lo tanto a enfriarse, en un proceso que sigue en marcha hoy mismo, y que además está acelerando. Cada nuevo acelerador, con sus colisiones cada vez más energéticas —más calientes— emula al universo primigenio en una fase cada vez más primitiva en su evolución inicial.

El principal objetivo de la física teórica contemporánea es unificar las cuatro fuerzas fundamentales (nuclear fuerte, nuclear débil, electromagnética y gravitatoria) bajo un único y profundo marco teórico, la “teoría del todo” que Einstein persiguió sin éxito durante los últimos 30 años de su vida.

El acelerador de Ginebra nos acerca más que nunca a la época remota en que todas las partículas y todas las fuerzas eran iguales, en que los campos de fuerza estaban evaporados. El campo de Higgs fue el primero en condensarse, y ello eliminó en cascada la simplicidad del universo primitivo: las partículas elementales adquirieron distintas masas, y también los bosones (como el fotón) que transmiten las fuerzas elementales, con lo que la única fuerza primordial se separó como las lenguas en la Torre de Babel.

El bosón de Higgs: una casi nada que lo explica casi todo.
 

Harry Block

Exiliado
Mensajes
6.088
Reacciones
1.519
Ubicación
Fantasía
Respuesta: ¿Nueva física? El bosón de Higgs está rodeado.

TRIBUNA

El bosón de Higgs para profanos

En el diseño del experimento CMS ha trabajado un equipo de investigadores y científicos españoles

Pablo García Abia - Madrid
El PAÍS - Sociedad - 4 JUL 2012


La masa es uno de los conceptos más fundamentales y a la vez extraños en física. Desde que, siendo unos retoños, empezamos a interaccionar con el mundo que nos rodea nos familiarizamos con la masa de los objetos. Nos resulta sencillo desplazar la pelota de goma, pero se nos hace imposible mover el armario. Rápidamente asociamos el concepto de masa al de inercia, concepto, éste último, que tenemos tan interiorizado que nos resulta tremendamente intuitivo, incontestable.

Los objetos macroscópicos (los que podemos ver a simple vista) están hechos de materiales compuestos de moléculas. Estas no son sino conjuntos de átomos, estructuras formadas por ínfimas partículas elementales que interaccionan entre sí gracias a su carga eléctrica.

La masa de todo lo que nos rodea es (dejando de lado el rigor de importantes detalles en aras de hacer el razonamiento más intuitivo) la suma de las masas de todas esas partículas diminutas, invisibles, de las que están hechos, de las que estamos hechos.

En física no es fácil explicar cuál es el origen de la masa de las partículas. Podríamos contentarnos con asumir que es así, renunciando a profundizar en los misterios de la naturaleza. Pero esa actitud no crítica es contraria al espíritu de la ciencia. Es razonable pensar que existe un mecanismo que hace que unas partículas experimenten una inercia diferente de otras, por lo que sus masas serán de diferente magnitud.

Una hipótesis razonable para este mecanismo es suponer que existe un "campo" que permea todo el espacio (el universo) con el que interaccionan casi todas las partículas elementales. Aquellas partículas que experimenten una interacción intensa con este campo serán partículas muy masivas, mientras las que lo hagan levemente serán ligeras.

Pero, ¿y las que no interaccionan ? Esas, como el fotón (la partícula de la luz), carecen de masa pudiendo moverse libremente a la velocidad de la luz. Estamos hablando del campo de Higgs. Si visualizamos este campo como una gelatina que, de forma apenas perceptible, ocupa todo el espacio podemos interpretar la inercia como la interacción de las partículas elementales con esta "sustancia" (sin olvidar que ésto no es sino una imagen mental, un ejercicio intelectual). Este campo que, como dijimos, permea todo el espacio, es prácticamente indetectable. Sin embargo, el modelo de Higgs predice que si lo agitamos con suficiente fuerza podemos producir perturbaciones en el mismo que serían detectables. Esas perturbaciones son la partícula de Higgs (más técnicamente, el bosón de Higgs).

El bosón de Higgs y los experimentos del CERN

En ciencia, para que un teoría pase de ser una hipótesis razonable, es imprescindible que haga predicciones de fenómenos no observados previamente, y que estas predicciones sean confirmadas a través de experimentos.

Una forma de alcanzar la energía capaz de producir perturbaciones detectables del campo de Higgs es acelerar dos haces de protones, en direcciones contrarias, a una velocidad próxima a la de la luz, y hacerlos chocar, provocando la completa desintegración de las partículas que participan en la colisión (los quarks y gluones de los que están hechos los protones). La energía de la colisión se transforma en nuevas partículas (ya conocidas) que se alejan del punto de interacción a velocidades próximas a las de la luz.

El acelerador LHC del CERN es capaz de acelerar grandes cantidades de protones (decenas de billones de protones por haz) al 99.999997% de la velocidad de la luz y hacerlos colisionar en puntos de interacción muy precisos (cada uno de ellos es, en buena aproximación, un circulo de 10 milésimas de milímetro de radio) en torno a los cuales están situados los detectores de partículas.

Estos detectores, ATLAS y CMS, son complejos dispositivos electrónicos (con unos 100 millones de canales de lectura) capaces de registrar con elevadísima precisión las trayectorias y energías de las partículas emergentes de las colisiones entre protones, que tienen lugar a un ritmo de 20 millones de veces por segundo.

Si el bosón de Higgs existe, en un muy reducido número de casos también podría ser producido en el colosal choque de partículas (que llamamos "suceso"). La dificultad del experimento radica en aislar las colisiones en las que se ha producido un bosón de Higgs de aquellas en las que no lo ha hecho lo que, según los modelos teóricos, ocurre una vez cada billón de colisiones. El físico experimental debe explotar las propiedades de desintegración del bosón de Higgs para separar su señal de la ingente cantidad de colisiones muy similares que, sin embargo, no han dado lugar a esta partícula. No es trivial identificar un suceso de Higgs aislado, por lo que el experimento se realiza una enorme cantidad de veces para acumular un elevado número de datos. Esto pone de manifiesto el carácter estadístico del análisis. Cuando decimos que un suceso (una colisión) ha dado lugar a un bosón de Higgs, solo podemos hablar de la probabilidad de que sea así. Las muestras de sucesos "de Higgs" contienen inevitablemente una cantidad de otros sucesos (sin Higgs) que tenemos que cuantificar con muchísimo cuidado, lo que supone una buena parte del trabajo del físico experimental.

El bosón de Higgs no se puede detectar directamente. Esta partícula altamente inestable se desintegraría de forma casi inmediata dando lugar a otras partículas más comunes. En el modelo de Higgs, el parámetro fundamental que dicta cómo se desintegra el bosón de Higgs y cómo se observa en los experimentos es la masa del propio bosón de Higgs. Los físicos determinan la masa de esta partícula a partir de las medidas precisas de las trayectorias y energías de las partículas procedentes de su desintegración. Estas distribuciones contienen una contribución irreducible de sucesos sin Higgs (llamados contaminación) y una contribución adicional compatible con la señal esperada para sucesos con un bosón de Higgs con una masa próxima a 125 GeV (es decir, 133 veces la masa del protón).

Para poder afirmar que las observaciones confirman o refutan la teoría es imprescindible cuantificar la prominencia de los sucesos compatibles con la señal del Higgs sobre los sucesos de contaminación. Dado el carácter estadístico del análisis, cuantificamos la señal como la probabilidad de que sea incompatible con una fluctuación estadística de los sucesos de contaminación, sin Higgs. En el caso de CMS, esta incompatibilidad es de una parte en 3 millones.

Como consecuencia del análisis de los datos del detector CMS podemos afirmar que, con la probabilidad mencionada, observamos la señal de una nueva partícula compatible con lo que se espera para un bosón de Higgs de masa 125.3 GeV. El hecho de que ATLAS obtenga conclusiones similares del análisis de sus datos refuerza nuestras conclusiones. En cualquier caso, para poder confirmar si se trata realmente del bosón de Higgs o de otra partícula con características similares, ATLAS y CMS van a medir con precisión la naturaleza y propiedades de la nueva partícula con los datos que LHC va a proporcionar hasta primeros de 2013, multiplicando por un factor aproximadamente 4 el número de datos recogidos hasta la fecha.

El diseño y construcción del experimento CMS ha supuesto un colosal esfuerzo de científicos e ingenieros procedentes de unos 40 países. Actualmente, la Colaboración CMS está integrada por 3300 físicos e ingenieros de 193 institutos. Entre ellos se encuentran los grupos españoles del Instituto de Física Corpuscular de Cantabria, la Universidad de Oviedo, la Universidad Autónoma de Madrid y el Centro de Investigaciones Energéticas, Mediambientales y Tecnológicas (CIEMAT, Madrid). Los grupos españoles han participado, desde hace 20 años, en todas las facetas del experimento: diseño, construcción, puesta en marcha, adquisición y análisis de datos, así como en el sistema de computación distribuida Grid. En particular, han hecho contribuciones directas muy importantes en la búsqueda del bosón de Higgs.

Pablo García Abia es físico del Ciemat y miembro del experimento CMS
 

PAN METRON

Menudo desfase
Mensajes
1.712
Reacciones
13
Ubicación
inopia
Respuesta: ¿Nueva física? El bosón de Higgs está rodeado.

Ordenadores cuánticos, pfff. Menuda mierda.

Les doy 10 años para descubrir y dominar la antigravedad y tener todos por fin nuestras mochilas-cohete.
 

Bean

Sonidista
Mensajes
290
Reacciones
19
Respuesta: ¿Nueva física? El bosón de Higgs está rodeado.

Estupenda entrevista. No entiendo nada, pero me parece fascinante. Me encanta como habla (escribe) esta gente, no es lo que uno esperaría de entrada en un científico que trabaja en un campo tan arduo... Supongo que necesitan tal grado de abstracción para acercarse a ese conocimiento y plantear tantas analogías comprensibles para divulgarlo un poco que me parece que hacen autentica poesía. :palmas
 

vdky

Tú y yo lo sabíamos
Mensajes
2.266
Reacciones
182
Ubicación
En el madroño escondido
Respuesta: ¿Nueva física? El bosón de Higgs está rodeado.

Según se comenta, la exactitud de los datos obtenidos alcanzaría un Sigma 5 lo que viene a ser unas probabilidades de que todo sea un fallo nulas.

http://www.nytimes.com/2012/06/20/s...secrecy-at-cern.html?_r=2&partner=rss&emc=rss
Al contrario. No descarta errores, solo señala las Probabilidades de error posibles. Si fuera nivel 6, se estimarían 3,4 errores por millón. Lo cual, según de que se este midiendo puede ser una catástrofe no admisible. Así q imagina con un nivel 5 y sus 233 errores... Por millon
 

El_Cizañas

Treceavamente campeón de Europa
Mensajes
10.425
Reacciones
1.243
Ubicación
Madrid, capital del Reino de todo y de más
:facepalm

Entonces otra vez tendremos posibilidades de Enero de que el mundo sea absorbido por un enorme agujero negro creado artificialmente por el egoismo del hombre, al intentar buscar respuestas a cosas que van más allá de su compresión.
 
Arriba Pie